((i-2)^3-5*i)/(6*i)+i+2
You asked:
Evaluate the expression: \(\frac{{\left( i - 2 \right)}^{3} - 5 i}{6 i} + i + 2\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{{\left( i - 2 \right)}^{3} - 5 i}{6 i} + i + 2 = 2 - \frac{i \left(- 5 i + \left(-2 + i\right)^{3}\right)}{6} + i \)
Expanded
\[\frac{{\left( i - 2 \right)}^{3} - 5 i}{6 i} + i + 2 = 3 + \frac{4 i}{3}\]
Factored
\[\frac{{\left( i - 2 \right)}^{3} - 5 i}{6 i} + i + 2 = \frac{18 + 8 i}{6}\]
\(i\) is the imaginary unit, defined as \(i^2 = -1\).