- 5/4e^4 + 5e^4/4
You asked:
Evaluate the expression: \(\frac{-5}{4 {e}^{4}} + \frac{5 {e}^{4}}{4}\)
MathBot Answer:
\[\frac{-5}{4 {e}^{4}} + \frac{5 {e}^{4}}{4} = - \frac{5}{4 e^{4}} + \frac{5 e^{4}}{4} \approx 68.22479299281938112227067897698455\]
\[\begin{aligned}\frac{-5}{4 {e}^{4}} + \frac{5 {e}^{4}}{4}& = -5 \cdot \frac{1}{4 \cdot e^{4}} + 5 \cdot e^{4} \cdot \frac{1}{4}\\& = - \frac{5}{4} \cdot e^{-4} + 5 \cdot e^{4} \cdot \frac{1}{4}\\& = - \frac{5}{4} \cdot e^{-4} + 5 \cdot \frac{1}{4} \cdot e^{4}\\& = - \frac{5}{4} \cdot e^{-4} + \frac{5}{4} \cdot e^{4}\end{aligned}\]
\(e\) is Euler's number, a mathematical constant that is approximately \(2.71828\).