a*x^(a-1)-l*p

asked by guest
on Nov 23, 2024 at 1:17 am



You asked:

Evaluate the expression: \(a \cdot {x}^{a - 1} - l p\)

MathBot Answer:

Evaluated



\(\displaystyle a \cdot {x}^{a - 1} - l p = x^{a - 1} a - l p \)


Expanded

\[a \cdot {x}^{a - 1} - l p = \frac{x^{a} a}{x} - l p\]


Factored

\[a \cdot {x}^{a - 1} - l p = \frac{x^{a} a}{x} - l p\]