a*x^(a-1)-l*p
You asked:
Evaluate the expression: \(a \cdot {x}^{a - 1} - l p\)
MathBot Answer:
Evaluated
\(\displaystyle a \cdot {x}^{a - 1} - l p = x^{a - 1} a - l p \)
Expanded
\[a \cdot {x}^{a - 1} - l p = \frac{x^{a} a}{x} - l p\]
Factored
\[a \cdot {x}^{a - 1} - l p = \frac{x^{a} a}{x} - l p\]