.5X+.6Y=5000

1.1X+1.5Y=4000

Solve for x and y

asked by guest
on Nov 23, 2024 at 3:11 am



You asked:

Given \( .5 X + .6 Y = 5000 \), \( 1.1 X + 1.5 Y = 4000 \), evaluate \( x \), \( y \).

MathBot Answer:

Assuming \(x\) and \(X\) are referring to the same variable.

Assuming \(y\) and \(Y\) are referring to the same variable.


The system of linear equations has exactly one solution.

\[x = \frac{170000}{3}\]

\[y = - \frac{350000}{9}\]


Solve \(\frac{x}{2} + \frac{3 y}{5} = 5000\) for \(x\). \[x = 10000 - \frac{6 y}{5}\]

Substitute \(10000 - \frac{6 y}{5}\) for \(x\) in \(\frac{11 x}{10} + \frac{3 y}{2} = 4000\) and simplify. $$\begin{aligned}\frac{11 x}{10} + \frac{3 y}{2} &= 4000 \\ \frac{11 \left(10000 - \frac{6 y}{5}\right)}{10} + \frac{3 y}{2} &= 4000 \\ y &= - \frac{350000}{9} \end{aligned}$$

Use substitution of the numerical value of \(y\) to get the values of \(x\). $$\begin{aligned}x &= 10000 - \frac{6 y}{5} \\ x &= 10000 - 6 \left(-350000\right) \frac{1}{9} \cdot \frac{1}{5} \\ x &= \frac{170000}{3}\end{aligned}$$