.5X+.6Y=5000
1.1X+1.5Y=4000
Solve for x and y
You asked:
MathBot Answer:
Assuming \(x\) and \(X\) are referring to the same variable.
Assuming \(y\) and \(Y\) are referring to the same variable.
The system of linear equations has exactly one solution.
\[x = \frac{170000}{3}\]
\[y = - \frac{350000}{9}\]
Solve \(\frac{x}{2} + \frac{3 y}{5} = 5000\) for \(x\). \[x = 10000 - \frac{6 y}{5}\]
Substitute \(10000 - \frac{6 y}{5}\) for \(x\) in \(\frac{11 x}{10} + \frac{3 y}{2} = 4000\) and simplify. $$\begin{aligned}\frac{11 x}{10} + \frac{3 y}{2} &= 4000 \\ \frac{11 \left(10000 - \frac{6 y}{5}\right)}{10} + \frac{3 y}{2} &= 4000 \\ y &= - \frac{350000}{9} \end{aligned}$$
Use substitution of the numerical value of \(y\) to get the values of \(x\). $$\begin{aligned}x &= 10000 - \frac{6 y}{5} \\ x &= 10000 - 6 \left(-350000\right) \frac{1}{9} \cdot \frac{1}{5} \\ x &= \frac{170000}{3}\end{aligned}$$