(3/5 * x + 1/2 * y) * (5/6 * x + 4y)
You asked:
Evaluate the expression: \(\left(\frac{3}{5} \cdot x + \frac{1}{2} \cdot y\right) \cdot \left(\frac{5}{6} \cdot x + 4 y\right)\)
MathBot Answer:
Evaluated
\(\displaystyle \left(\frac{3}{5} \cdot x + \frac{1}{2} \cdot y\right) \cdot \left(\frac{5}{6} \cdot x + 4 y\right) = \left(\frac{3 x}{5} + \frac{y}{2}\right) \left(\frac{5 x}{6} + 4 y\right) \)
Expanded
\[\left(\frac{3}{5} \cdot x + \frac{1}{2} \cdot y\right) \cdot \left(\frac{5}{6} \cdot x + 4 y\right) = \frac{x^{2}}{2} + \frac{169 x y}{60} + 2 y^{2}\]
Factored
\[\left(\frac{3}{5} \cdot x + \frac{1}{2} \cdot y\right) \cdot \left(\frac{5}{6} \cdot x + 4 y\right) = \frac{\left(5 x + 24 y\right) \left(6 x + 5 y\right)}{60}\]