make x the subject
y = $x^{2}$ +9/$x^{2}$ -7
You asked:
Solve the equation \[y = {x}^{2} + \frac{9}{{x}^{2}} - 7\] for the unknown \(x\).
MathBot Answer:
$$\begin{aligned}x &= \sqrt{\frac{y}{2} - \frac{\sqrt{y^{2} + 14 y + 13}}{2} + \frac{7}{2}}\\x &= \sqrt{\frac{y}{2} + \frac{\sqrt{y^{2} + 14 y + 13}}{2} + \frac{7}{2}}\\x &= - \sqrt{\frac{y}{2} - \frac{\sqrt{y^{2} + 14 y + 13}}{2} + \frac{7}{2}}\\x &= - \sqrt{\frac{y}{2} + \frac{\sqrt{y^{2} + 14 y + 13}}{2} + \frac{7}{2}}\end{aligned}$$ and \(x \neq 0\)