((21/5*i)(-7/2-3/4*i))/((3/4*i-7/2)(-7/2-3/4*i))
You asked:
MathBot Answer:
Evaluated
\(\displaystyle \frac{\frac{21}{5} \cdot i \cdot \left(\frac{-7}{2} - \frac{3}{4} \cdot i\right)}{\left(\frac{3}{4} \cdot i - \frac{7}{2}\right) \cdot \left(\frac{-7}{2} - \frac{3}{4} \cdot i\right)} = \frac{5376 i \left(- \frac{7}{2} - \frac{3 i}{4}\right)^{2} \left(- \frac{7}{2} + \frac{3 i}{4}\right)}{210125} \)
Expanded
\[\frac{\frac{21}{5} \cdot i \cdot \left(\frac{-7}{2} - \frac{3}{4} \cdot i\right)}{\left(\frac{3}{4} \cdot i - \frac{7}{2}\right) \cdot \left(\frac{-7}{2} - \frac{3}{4} \cdot i\right)} = \frac{252}{1025} - \frac{1176 i}{1025}\]
Factored
\[\frac{\frac{21}{5} \cdot i \cdot \left(\frac{-7}{2} - \frac{3}{4} \cdot i\right)}{\left(\frac{3}{4} \cdot i - \frac{7}{2}\right) \cdot \left(\frac{-7}{2} - \frac{3}{4} \cdot i\right)} = \frac{84 i \left(-14 - 3 i\right)^{2} \left(-14 + 3 i\right)}{210125}\]
\(i\) is the imaginary unit, defined as \(i^2 = -1\).