Simplify the expression sec theta - (sec(theta)) * sin^2 theta

asked by guest
on Nov 28, 2024 at 7:57 pm



You asked:

Simplify the expression: \(\sec\left( θ \right) - \sec\left( θ \right) \cdot {\sin\left( θ \right)}^{2}\)

MathBot Answer:

Simplified:

\[ \sec\left( θ \right) - \sec\left( θ \right) \cdot {\sin\left( θ \right)}^{2} = \cos{\left(θ \right)} \]


Factored:

\[ \sec\left( θ \right) - \sec\left( θ \right) \cdot {\sin\left( θ \right)}^{2} = - \left(\sin{\left(θ \right)} - 1\right) \left(\sin{\left(θ \right)} + 1\right) \sec{\left(θ \right)} \]