Simplify the expression sec theta - (sec(theta)) * sin^2 theta
You asked:
Simplify the expression: \(\sec\left( θ \right) - \sec\left( θ \right) \cdot {\sin\left( θ \right)}^{2}\)
MathBot Answer:
Simplified:
\[ \sec\left( θ \right) - \sec\left( θ \right) \cdot {\sin\left( θ \right)}^{2} = \cos{\left(θ \right)} \]
Factored:
\[ \sec\left( θ \right) - \sec\left( θ \right) \cdot {\sin\left( θ \right)}^{2} = - \left(\sin{\left(θ \right)} - 1\right) \left(\sin{\left(θ \right)} + 1\right) \sec{\left(θ \right)} \]