$\frac{\ n! - (n + 1)!}{\ n!}$

asked by guest
on Nov 23, 2024 at 12:03 pm



You asked:

Evaluate the expression: \(\frac{n! - \left( n + 1 \right)!}{n!}\)

MathBot Answer:

Evaluated



\(\displaystyle \frac{n! - \left( n + 1 \right)!}{n!} = \frac{n! - \left(n + 1\right)!}{n!} \)


Expanded

\[\frac{n! - \left( n + 1 \right)!}{n!} = 1 - \frac{\left(n + 1\right)!}{n!}\]


Factored

\[\frac{n! - \left( n + 1 \right)!}{n!} = - \frac{- n! + \left(n + 1\right)!}{n!}\]