$\frac{\ n! - (n + 1)!}{\ n!}$
You asked:
Evaluate the expression: \(\frac{n! - \left( n + 1 \right)!}{n!}\)
MathBot Answer:
Evaluated
\(\displaystyle \frac{n! - \left( n + 1 \right)!}{n!} = \frac{n! - \left(n + 1\right)!}{n!} \)
Expanded
\[\frac{n! - \left( n + 1 \right)!}{n!} = 1 - \frac{\left(n + 1\right)!}{n!}\]
Factored
\[\frac{n! - \left( n + 1 \right)!}{n!} = - \frac{- n! + \left(n + 1\right)!}{n!}\]