cos3x-sin3x/cosx-sinx
You asked:
Evaluate the expression: \(\cos\left( 3 x \right) - \frac{\sin\left( 3 x \right)}{\cos\left( x \right)} - \sin\left( x \right)\)
MathBot Answer:
Evaluated
\(\displaystyle \cos\left( 3 x \right) - \frac{\sin\left( 3 x \right)}{\cos\left( x \right)} - \sin\left( x \right) = - \frac{\sin{\left(3 x \right)}}{\cos{\left(x \right)}} - \sin{\left(x \right)} + \cos{\left(3 x \right)} \)
Factored
\[\cos\left( 3 x \right) - \frac{\sin\left( 3 x \right)}{\cos\left( x \right)} - \sin\left( x \right) = \frac{- \sin{\left(3 x \right)} - \sin{\left(x \right)} \cos{\left(x \right)} + \cos{\left(3 x \right)} \cos{\left(x \right)}}{\cos{\left(x \right)}}\]